• Home
  • Bartec Agile X Tablet PC

Price Match & Bulk Order Discounts Available +44 (0) 1249 434 992 Request a Callback

Bartec Agile X Tablet PC (2D Imager, Windows Embedded Handheld)

B7-A234-4231/1110300
2D Imager , Windows Embedded Handheld, 4G
Excl. Tax: £2,538.00 Incl. Tax: £3,045.60

The Agile X IS is introducing a new era in mobile data exchange: the first tablet PC certified completely for Zone 1/Div. 1 is ready for industrial field use. Equipped with an as yet unique hot swappable storage battery, The BARTEC Agile X is an extremely slim-line, rugged and highly flexible industrial tablet PC for rough environments. Agile X has a large number of international certifications and can be used throughout the world. It is licensed for ATEX and IECEx Zone 2/22 and to UL Class I Division 2. Further national certifications are possible on customer request. Thanks to its broad range of functions, the Agile X is the perfect assistant to service technicians, operating staff, engineers and project managers in the field and in industry.

Write Your Own Review of Bartec Agile X Tablet PC

How do you rate this product? *

Service
Performance
Value

keypad

Touchscreen

 A touchscreen is an input device normally layered on the top of an electronic visual display of an information processing system. A user can give input or control the information processing system through simple or multi-touch gestures by touching the screen with a special stylus/pen and-or one or more fingers. Some touchscreens use ordinary or specially coated gloves to work while others use a special stylus/pen only. The user can use the touchscreen to react to what is displayed and to control how it is displayed; for example, zooming to increase the text size.

Connectivity

802.11 a/b/g/n

802.11 a

The 802.11a standard uses the same data link layer protocol and frame format as the original standard, but an OFDM based air interface (physical layer). It operates in the 5 GHz band with a maximum net data rate of 54 Mbit/s, plus error correction code, which yields realistic net achievable throughput in the mid-20 Mbit/s. Since the 2.4 GHz band is heavily used to the point of being crowded, using the relatively unused 5 GHz band gives 802.11a a significant advantage. However, this high carrier frequency also brings a disadvantage: the effective overall range of 802.11a is less than that of 802.11b/g. In theory, 802.11a signals are absorbed more readily by walls and other solid objects in their path due to their smaller wavelength, and, as a result, cannot penetrate as far as those of 802.11b. In practice, 802.11b typically has a higher range at low speeds (802.11b will reduce speed to 5.5 Mbit/s or even 1 Mbit/s at low signal strengths). 802.11a also suffers from interference, but locally there may be fewer signals to interfere with, resulting in less interference and better throughput.

802.11 b 

The 802.11b standard has a maximum raw data rate of 11 Mbit/s, and uses the same media access method defined in the original standard. 802.11b products appeared on the market in early 2000, since 802.11b is a direct extension of the modulation technique defined in the original standard. The dramatic increase in throughput of 802.11b (compared to the original standard) along with simultaneous substantial price reductions led to the rapid acceptance of 802.11b as the definitive wireless LAN technology. Devices using 802.11b experience interference from other products operating in the 2.4 GHz band. Devices operating in the 2.4 GHz range include microwave ovens, Bluetooth devices, baby monitors, cordless telephones, and some amateur radio equipment.

802.11 g 

In June 2003, a third modulation standard was ratified: 802.11g. This works in the 2.4 GHz band (like 802.11b), but uses the same OFDM based transmission scheme as 802.11a. It operates at a maximum physical layer bit rate of 54 Mbit/s exclusive of forward error correction codes, or about 22 Mbit/s average throughput.802.11g hardware is fully backward compatible with 802.11b hardware, and therefore is encumbered with legacy issues that reduce throughput by ~21% when compared to 802.11a. The then-proposed 802.11g standard was rapidly adopted in the market starting in January 2003, well before ratification, due to the desire for higher data rates as well as to reductions in manufacturing costs. By summer 2003, most dual-band 802.11a/b products became dual-band/tri-mode, supporting a and b/g in a single mobile adapter card or access point. Details of making b and g work well together occupied much of the lingering technical process; in an 802.11g network, however, activity of an 802.11b participant will reduce the data rate of the overall 802.11g network.Like 802.11b, 802.11g devices suffer interference from other products operating in the 2.4 GHz band, for example wireless keyboard

802.11 n 

802.11n is an amendment that improves upon the previous 802.11 standards by adding multiple-input multiple-output antennas (MIMO). 802.11n operates on both the 2.4 GHz and the lesser-used 5 GHz bands. Support for 5 GHz bands is optional. It operates at a maximum net data rate from 54 Mbit/s to 600 Mbit/s. The IEEE has approved the amendment, and it was published in October 2009 Prior to the final ratification, enterprises were already migrating to 802.11n networks based on the Wi-Fi Alliance's certification of products conforming to a 2007 draft of the 802.11n proposal. The 802.11n amendment includes many enhancements that improve WLAN range, reliability, and throughput. At the physical (PHY) layer, advanced signal processing and modulation techniques have been added to exploit multiple antennas and wider channels. At the Media Access Control (MAC) layer, protocol extensions make more efficient use of available bandwidth. Together, these High Throughput (HT) enhancements can boost data rates up to 600 Mbps – more than a ten-fold improvement over 54 Mbps 802.11a/g (now considered to be legacy devices).

Bluetooth

Bluetooth operates at frequencies between 2400 and 2483.5 MHz (including guard bands 2 MHz wide at the bottom end and 3.5 MHz wide at the top). This is in the globally unlicensed (but not unregulated) Industrial, Scientific and Medical (ISM) 2.4 GHz short-range radio frequency band. Bluetooth uses a radio technology called frequency-hopping spread spectrum. Bluetooth divides transmitted data into packets, and transmits each packet on one of 79 designated Bluetooth channels. Each channel has a bandwidth of 1 MHz. Bluetooth 4.0 uses 2 MHz spacing, which accommodates 40 channels. The first channel starts at 2402 MHz and continues up to 2480 MHz in 1 MHz steps. It usually performs 1600 hops per second, with Adaptive Frequency-Hopping (AFH) enabled.

RFID

RFID provides a way for organizations to identify and manage tools and equipment (asset tracking) , without manual data entry. RFID is being adopted for item level tagging in retail stores. This provides electronic article surveillance (EAS), and a self checkout process for consumers. Automatic identification with RFID can be used for inventory systems. Manufactured products such as automobiles or garments can be tracked through the factory and through shipping to the customer.

Scanner

Image Scanner Standard Range

In addition to 1D barcodes, digital imagers (also known as area imagers) can decode 2D barcodes. 2D barcodes can be encoded with significantly more information than 1D barcodes, making digital imagers beneficial to transportation, logistics, and tracking applications. Area imagers enable omni-directional reading of barcodes, eliminating the need to accommodate the scanning device. In addition to reading one and two-dimensional barcodes, high performance digital imagers can capture and transfer images, enabling signature capture and the scanning of documents. Area imagers have the capability of reading Direct Part Marking (DPM), a method of permanently marking a product. DPM is growing in popularity and allows a product to be tracked throughout its life. Digital imagers offer many advantages in certain applications, but area imagers are not to be confused with linear imagers. Although data is captured in a similar way, linear imagers aren’t capable of decoding entire images or 2D barcodes as an area imager can. Area imagers offer significantly more benefits and are the only choice for 2D barcode applications. 

features

Digital Camera

Digital cameras can have many different business applications and the main variant is how many megapixels (MP) they contain. Please see the individual product descriptions for camera details including MP.